Cascade and locally dissipative realizations of linear quantum systems for pure Gaussian state covariance assignment

نویسندگان

  • Shan Ma
  • Matthew J. Woolley
  • Ian R. Petersen
  • Naoki Yamamoto
چکیده

This paper presents two realizations of linear quantum systems for covariance assignment corresponding to pure Gaussian states. The first one is called a cascade realization; given any covariance matrix corresponding to a pure Gaussian state, we can construct a cascaded quantum system generating that state. The second one is called a locally dissipative realization; given a covariance matrix corresponding to a pure Gaussian state, if it satisfies certain conditions, we can construct a linear quantum system that has only local interactions with its environment and achieves the assigned covariance matrix. Both realizations are illustrated by examples from quantum optics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear quantum systems with diagonal passive Hamiltonian and a single dissipative channel

Given any covariance matrix corresponding to a so-called pure Gaussian state, a linear quantum system can be designed to achieve the assigned covariance matrix. In most cases, however, one might obtain a system that is difficult to realize in practice. In this paper, we restrict our attention to a special class of linear quantum systems, i.e., systems with diagonal passive Hamiltonian and a sin...

متن کامل

Partial Eigenvalue Assignment in Discrete-time Descriptor Systems via Derivative State Feedback

A method for solving the descriptor discrete-time linear system is focused. For easily, it is converted to a standard discrete-time linear system by the definition of a derivative state feedback. Then partial eigenvalue assignment is used for obtaining state feedback and solving the standard system. In partial eigenvalue assignment, just a part of the open loop spectrum of the standard linear s...

متن کامل

Pure Stationary States of non-Hamiltonian and Dissipative Quantum Systems

Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss...

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

Standard forms and entanglement engineering of multimode Gaussian states under local operations

We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parametres which completely characterise the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parametre reduction due to the additional con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatica

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2018